Abstract

Capillary electrophoresis (CE) is a powerful technique continuously expanding into new application fields. One of these applications involves the study of enzymes, their catalytic activities and the alteration of this activity by specific ligands. In this review, two model enzymes, lipases and kinases, will be used since they differ substantially in their modes of action, reaction requirements and applications making them perfect subjects to demonstrate the advantages and limitations of CE-based enzymatic assays. Indeed, the ability to run CE in various operation modes and hyphenation to different detectors is essential for lipase-based studies. Additionally, the low sample consumption provided by CE promotes it as a promising technique to assay human and viral nucleoside kinases. Undeniably, these are rarely commercially available enzymes and must be frequently produced in the laboratory, a process which requires special sets of skills. CE-based lipase and kinase reactions can be performed outside the capillary (pre-capillary) where the reactants are mixed in a vial prior to their separation or, inside the capillary (in-capillary) where the reactants are mixed before the electrophoretic analysis. These enzyme-based applications of CE will be compared to those of liquid chromatography-based applications in terms of advantages and limitations. Binding assays based on affinity CE and the compelling microscale thermophoresis (MST) will be briefly presented as they allow a broad understanding of the molecular mechanism behind ligand binding and of the resulting modulation in activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.