Abstract

The dynamics of capillary climb of a wetting liquid into a porous medium that is opposed by gravity force is studied numerically. We use the capillary network model, in which an actual porous medium is represented as a network of pores and throats, each following a predefined size distribution function. The liquid potential in the pores along the liquid interface within the network is calculated as a result of capillary and gravity forces. The solution is general, and accounts for changes in the climbing height and climbing velocity. The numerical results for the capillary climb reveal that there are at least two distinct flow mechanisms. Initially, the flow is characterized by high climbing velocity, in which the capillary force is higher than the gravity force, and the flow is the viscous force dominated. For this single-phase flow, the Washburn equation can be used to predict the changes of climbing height over time. Later, for longer times and larger climbing height, the capillary and gravity forces become comparable, and one observes a slower increase in the climbing height as a function of time. Due to the two forces being comparable, the gas-liquid sharp interface transforms into flow front, where the multiphase flow develops. The numerical results from this study, expressed as the climbing height as a power law function of time, indicate that the two powers, which correspond to the two distinct mechanisms, differ significantly. The comparison of the powers with experimental data indicates good agreement. Furthermore, the power value from the Washburn solution is also analyzed, where it should be equal to 1/2 for purely viscous force driven flow. This is in contrast to the power value of ∼0.43 that is found experimentally. We show from the numerical solution that this discrepancy is due to the momentum dissipation on the liquid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.