Abstract

The capillary bridge probe method was introduced previously as a high-accuracy contact angle determination method relying on capillary bridges on hydrophilic and superhydrophilic surfaces [Nagy, N. Langmuir2019, 35 ( (15), ), 5202−521230916567]. In this work, the behavior of r-ϑ type liquid bridges was studied and the contact angles were determined on hydrophobic surfaces. The equilibrium shape of these liquid bridges often does not contain the neck or haunch region. The unknown neck/haunch radius prevents analytical evaluation of the capillary bridge shape. In this work, the possible incomplete liquid bridge shapes were classified and a novel procedure was developed for the Delaunay’s analytical solution-based evaluation of these states. The parameter space of the capillary bridges was visualized and described without using dimensionless variables. As a demonstration, Cyclo Olefin Polymer and PTFE surfaces were investigated, with advancing and receding contact angles determined and compared to the results of sessile drop measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.