Abstract

Peptide nanostructures assembled from an aromatic diphenylalanine have attracted considerable attention because of high thermal and mechanical stabilities of the assembled morphologies. Of diverse assembled structures, liquid crystalline peptide nanowires exhibiting optical and mechanical anisotropies can be a valuable building block for micro- or nano-fluidics, molecular electronics, and biological sensing. In this work, we investigated large scale patterning of liquid crystalline peptide nanowires and pattern transfer. The peptide nanowires could be highly aligned on a substrate by capillary flow over a large area. The high etching resistivity of nanowires to subsequent reactive ion etching process allowed for a successful pattern transfer of the well-aligned nanowire morphology onto the underlying SiO2 substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.