Abstract

We introduce a dynamical model of node repair in distributed storage systems wherein the storage nodes are subjected to failures according to independent Poisson processes. The main parameter that we study is the time-average capacity of the network in the scenario where a fixed subset of the nodes support a higher repair bandwidth than the other nodes. The sequence of node failures generates random permutations of the nodes in the encoded block, and we model the state of the network as a Markov random walk on permutations of n elements. As our main result we show that the capacity of the network can be increased compared to the static (worst-case) model of the storage system, while maintaining the same (average) repair bandwidth, and we derive estimates of the increase. We also quantify the capacity increase in the case that the repair center has information about the sequence of the recently failed storage nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.