Abstract

Capacity improvement from transmitter and receiver cooperation is investigated in a two-transmitter, two-receiver network with phase fading and full channel state information (CSI) available at all terminals. The transmitters cooperate by first exchanging messages over an orthogonal transmitter cooperation channel, then encoding jointly with dirty-paper coding. The receivers cooperate by using Wyner-Ziv compress-and-forward over an analogous orthogonal receiver cooperation channel. To account for the cost of cooperation, the allocation of network power and bandwidth among the data and cooperation channels is studied. It is shown that transmitter cooperation outperforms receiver cooperation and improves capacity over noncooperative transmission under most operating conditions when the cooperation channel is strong. However, a weak cooperation channel limits the transmitter cooperation rate; in this case, receiver cooperation is more advantageous. Transmitter-and-receiver cooperation offers sizable additional capacity gain over transmitter-only cooperation at low signal-to-noise ratio (SNR), whereas at high SNR transmitter cooperation alone captures most of the cooperative capacity improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.