Abstract

Bacillus subtilis strains deficient in transduction, transformation, or both were examined for the ability to remove pyrimidine dimers and to convert deoxyribonucleic acid newly synthesized after ultraviolet irradiation to high molecular weight. In one strain deficient in both recombination processes, short pieces of deoxyribonucleic acid synthesized after irradiation were not converted to high molecular weight. Two transformable strains deficient in transduction were also deficient in postreplication repair (i.e., joining of newly synthesized DNA fragments), whereas a nontransformable strain that was normal in transduction was proficient in postreplication repair. None of the transformable strains showed deficiencies in repair resynthesis or ligase activity. Our results suggest that some recombinational events may be common to transduction and postreplication repair but not to transformation, emphasizing the difference between these two pathways for genetic exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.