Abstract

Abstract : In this paper, we derive closed form approximations for the capacity of a point-to-point, deterministic Gaussian MIMO communication channel. We focus on the behavior of the inverse eigenvalues of the Gram matrix associated with the gain matrix of the MIMO channel, by considering small variance and large power assumptions. We revisit the concept of deterministic MIMO capacity by pointing out that, under transmitter power constraint, the optimal transmit covariance matrix is not necessarily diagonal. We discuss the water filling algorithm for obtaining the optimal eigenvalues of the transmitter covariance matrix, and the water fill level in conjunction with the Karush-Kuhn-Tucker optimality conditions. We revise the Telatar conjecture for the capacity of a non-ergodic channel. We also provide deterministic examples and numerical simulations of the capacity, which are discussed in terms of our mathematical framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.