Abstract

In the present work, we have demonstrated the capacitive coupled non-zero and type-II hysteresis behavior of nickel ferrite (NFO)-titanium oxide (TiO2) nanocomposite. For this, NFO nanoparticles (NPs) and TiO2 NPs were synthesized using hydrothermal and sol-gel method, respectively. The NFO–TiO2 nanocomposite was prepared using a solid-state reaction method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The electrical results of the NFO–TiO2 memory device have shown non-zero I–V (unable to cross at origin), cross-over I–V and type-II hysteresis (tangential hysteresis loops) properties and their occurrence was depended upon the magnitude of the electrical stimulus. To further clarify the dominance of the memristive and type-II properties, we have calculated the charge-flux and non-transversal di/dv(t) characteristics of the device based on experimental results. The charge transport mechanisms were investigated and a plausible resistive switching mechanism was reported. Our investigations provide some insights to explain the non-zero and type-II hysteresis behavior of the memristive devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.