Abstract

Calcium entry via voltage-gated L-type channels is responsible for at least half of the increase in cytosolic calcium ([Ca(2+)](i)) in afferent arterioles following agonist stimulation. We sought the presence of capacitative calcium entry in fresh vascular smooth muscle cells (VSMC) derived from rat preglomerular vessels. [Ca(2+)](i) was measured using fura-2 ratiometric fluorescence. Vasopressin V1 receptor agonist (V1R) (10(-7) M) increased [Ca(2+)](i) by approximately 100 nM. A calcium channel blocker (CCB), nifedipine or verapamil (10(-7) M), inhibited the response by approximately 50%. V1R in the presence of CCB increased [Ca(2+)](i) from 106 to 176 nM, confirming that calcium mobilization and/or entry may occur independent of voltage-gated channels. In nominally Ca(2+)-free buffer, V1R increased [Ca(2+)](i) from 94 to 129 nM, denoting mobilization; addition of CaCl(2) (1 mM) further elevated [Ca(2+)](i) to 176 nM, indicating a secondary phase of Ca(2+) entry. Similar responses were obtained when CCB was present in calcium-free buffer or when EGTA was present. In nominally Ca(2+)-free medium, the sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (SRCAI), thapsigargin and cyclopiazonic acid (CPA), increased [Ca(2+)](i) from 97 to 128 and 143 nM, respectively, and to 214 and 220 nM, respectively, when 1 mM extracellular Ca(2+) was added. In the presence of verapamil, the results with CPA acid were nearly identical. In Ca(2+)-free buffer, the stimulatory effect of V1R or SRCAI on the Ca(2+)/fura signal was quenched by the addition of Mn(2+) (1 mM), demonstrating divalent cation entry. These studies provide evidence for capacitative (store- operated) calcium entry in VSMC freshly isolated from rat preglomerular arterioles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.