Abstract

We discuss the possibility of determining the properties and quality of spherical surfaces used in precise experiments with the help of capacitance measurements. The results of this kind measurements for the lens-plane and sphere-plane, Au coated surfaces are compared with theoretical predictions from various models of perfect and broken sphericity. It is shown that capacitance measurements are incapable of discriminating between models of perfect and modified centimeter-size spherical surfaces in an experiment demonstrating the anomalous scaling law for the electric force. Claims to the contrary in the recent literature are explained by the use of improper comparison. The data from capacitance measurements in an experiment measuring the Casimir force by means of a micromechanical torsional oscillator employing micrometer-size spheres are shown to be in excellent agreement with theoretical predictions using the model of a perfect spherical surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.