Abstract
We prove frame determination results for the family of many-valued modal logics introduced by M. Fitting in the early '90s. Each modal language of this family is based on a Heyting algebra, which serves as the space of truth values, and is interpreted on an interesting version of possible-worlds semantics: the modal frames are directed graphs whose edges are labelled with an element of the underlying Heyting algebra. We introduce interesting generalized forms of the classical axioms D, T, B, 4, and 5 and prove that they are canonical for certain algebraic frame properties, which generalize seriality, reflexivity, symmetry, transitivity and euclideanness. Our results are quite general as they hold for any modal language built on a complete Heyting algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.