Abstract

A complete, fully explicit, and canonical determination of the matrix elements of all adjoint tensor operators in all U(n) is presented. The class of adjoint tensor operators—those transforming as the IR [1 0̇ −1]—is the first exhibiting a nontrivial multiplicity. It is demonstrated that the canonical resolution of this multiplicity possesses several compatible (or equivalent) properties: classification by null spaces, classification by degree in the Racah invariants, classification by limit properties, and the classification by conjugation parity. (The concepts in these various classification properties are developed in detail.) A systematic treatment is presented for the coupling of projective (tensor) operators. Six appendices treat in detail the explicit evaluation of all Gel'fand-invariant operators (Ik), the structural properties of Gram determinants formed of the Ik, the zeros of the norms of the adjoint operators, and the conjugation properties of the canonical adjoint tensor operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.