Abstract

General relativity under the assumption of noncommuting components of the tetrad field is considered in this paper. Since the algebraic properties of the tetrad field representing the gravitational field are assumed to correspond to the noncommutativity algebra of the coordinates in the canonical case of noncommutative geometry, this idea is closely related to noncommutative geometry as well as to canonical quantization of gravity. According to this presupposition, generalized field equations for general relativity are derived which are obtained by replacing the usual tetrad field by the tetrad field operator within the actions and then building expectation values of the corresponding field equations between coherent states. These coherent states refer to creation and annihilation operators created from the components of the tetrad field operator. In this sense, the obtained theory could be regarded as a kind of semiclassical approximation of a complete quantum description of gravity. The consideration presupposes a special choice of the tensor determining the algebra providing a division of spacetime into two two-dimensional planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.