Abstract
If (A,B) is a reachable linear system over a commutative von Neumann regular ring R, a finite collection of idempotent elements is defined, constituting a complete set of invariants for the feedback equivalence. This collection allows us to construct explicitly a canonical form. Relations are given among this set of idempotents and various other families of feedback invariants. For systems of fixed sizes, the set of feedback equivalent classes of reachable systems is put into 1-1 correspondence with an appropriate partition of Spec(R) into open and closed sets. Furthermore, it is proved that a commutative ring R is von Neumann regular if and only if every reachable system over R is a finite direct sum of Brunovsky systems, for a suitable decomposition of R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.