Abstract

The role of the cancer/testis antigen CAGE in drug resistance was investigated. The drug-resistant human melanoma Malme3M (Malme3M(R)) and the human hepatic cancer cell line SNU387 (SNU387(R)) showed in vivo drug resistance and CAGE induction. Induction of CAGE resulted from decreased expression and thereby displacement of DNA methyltransferase 1(DNMT1) from CAGE promoter sequences. Various drugs induce expression of CAGE by decreasing expression of DNMT1, and hypomethylation of CAGE was correlated with the increased expression of CAGE. Down-regulation of CAGE in these cell lines decreased invasion and enhanced drug sensitivity resulting from increased apoptosis. Down-regulation of CAGE also led to decreased anchorage-independent growth. Down-regulation of CAGE led to increased expression of p53, suggesting that CAGE may act as a negative regulator of p53. Down-regulation of p53 enhanced resistance to drugs and prevented drugs from exerting apoptotic effects. In SNU387(R) cells, CAGE induced the interaction between histone deacetylase 2 (HDAC2) and Snail, which exerted a negative effect on p53 expression. Chromatin immunoprecipitation assay showed that CAGE, through interaction with HDAC2, exerted a negative effect on p53 expression in Malme3M(R) cells. These results suggest that CAGE confers drug resistance by regulating expression of p53 through HDAC2. Taken together, these results show the potential value of CAGE as a target for the development of cancer therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.