Abstract

A trivial projective change of a Finsler metric $F$ is the Finsler metric $F + df$. I explain when it is possible to make a given Finsler metric both forward and backward complete by a trivial projective change. The problem actually came from lorentz geometry and mathematical relativity: it was observed that it is possible to understand the light-line geodesics of a (normalized, standard) stationary 4-dimensional space-time as geodesics of a certain Finsler Randers metric on a 3-dimensional manifold. The trivial projective change of the Finsler metric corresponds to the choice of another 3-dimensional slice, and the existence of a trivial projective change that is forward and backward complete is equivalent to the global hyperbolicity of the space-time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.