Abstract

The aim of the present work is to determine whether mechanical stress caused by ultrasound (US) exposure affects osteoclastic precursor cells, thus addressing the hypothesis that mechanical strain-induced perturbation of preosteoclastic cell machinery can contribute to the occurrence of bone turnover alterations. Moreover, cell cytoskeleton was studied because of its supposed involvement in cell mechanotransduction. Our experimental model was the FLG 29.1 human cell line, previously characterized as an osteoclastic precursor model. Cell proliferation was quantified by trypan blue exclusion assay. Cell morpho-functional state was monitored by multispectral imaging autofluorescence microscopy. The expression of cytoskeletal components and markers of proliferation (Ki67) and osteoclastic differentiation (RANK) was analysed by immunocytochemistry. The findings demonstrated that US stimulation affects FLG 29.1 cell growth, depresses the expression of cytoskeletal components and markers of proliferation and differentiation, induces cell damage, thus supporting the hypothesis that US exposure inhibits osteoclastogenesis. These results have been compared with those obtained previously by exposure of FLG 29.1 cells to modelled hypogravity conditions. Finally, the possibility to utilize US stimulation for counteracting osteoporosis has been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.