Abstract
Our study evaluates the efficacy of a “green” (i.e., sustainable, recyclable, and reusable) technology to treat waste waters produced by Canada’s oil sands industry. We examined the ability of a novel advanced oxidative method—ultra-violet photocatalysis over titanium dioxide (TiO2)-coated microparticles—to reduce the toxicity of naphthenic acid fraction components (NAFC) to early life stages of the fathead minnow ( Pimephales promelas). Lengthening the duration of photocatalysis resulted in greater removal of NAFC from bioassay exposure waters; low- and high-intensity treatments reduced NAFC concentrations to about 20 and 3 mg/L (by Fourier-transformed infrared spectroscopy, FTIR), respectively. Treatments reduced the acute lethality of NAFC to fathead minnows by over half after low-intensity treatment and three-fold after high-intensity treatment. However, incomplete degradation in low-intensity treatments increased the incidence of chronic toxicity relative to untreated NAFC solutions and cardiovascular abnormalities were common even with >80% of NAFC degraded. Our findings demonstrate that photocatalysis over TiO2 microparticles is a promising method for mitigating the toxicity of oil sands process-affected water-derived NAFC to fish native to the oil sands region, but the intensity of the photocatalytic treatment needs to be considered carefully to ensure adequate mineralization of toxic constituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.