Abstract

Cation exchange (CE) has become a central strategy for preparing many previously unavailable semiconductor nanocrystals (NCs). However, general understanding of mechanisms governing morphology preservation or evolution upon CE reaction remains limited. In this study, we carried out CE starting from biconcave Cu1.94S nanoplatelet (NPl) templates, whose relatively complex structure both provides opportunities to lower overall surface energy by shape evolution and facilitates observation of any shape evolution that occurs. From these templates, we prepared NCs of binary and ternary metal sulfides including CdS, ZnS, CuInS2, MnS, SnS, PbS, and SnS2. This study reveals that preservation of the template morphology depends upon compatibility of the anionic sublattices (hcp vs fcc) of the template and final product and produces biconcave NPls of several compositions for which this morphology has not previously been reported. In addition, we probed the morphology-dependent optical responses of different anisotropic CdS nanostructures produced by this approach, providing insight into the optical properties of a previously unreported morphology of CdS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.