Abstract
We characterized structural and functional attributes along hillslope gradients in headwater catchments. We endeavored to identify parameters that described significant transitions along the hillslope. On each of four catchments, we installed eight 50 m transects perpendicular to the stream. Structural attributes included woody and herbaceous vegetation; woody debris and forest floor mass, nitrogen (N) and carbon (C); total soil C and N; litterfall amount and quality by species; and microclimatic conditions. Functional attributes included litter decomposition, soil microarthropods, soil CO2evolution, soil solution chemistry, and soil extractable N. Forest floor mass, N and C, and soil depth increased with distance from the stream and transitioned between 10 and 20 m. In contrast, litterfall N rate (kilograms of nitrogen per hectare per day), downed woody debris, soil A-horizon C and N, and soil solution NO3concentration all decreased with distance, and exhibited significant transitions. Certain overstory species were more abundant in the uplands than near the stream. Herbaceous diversity and richness were similar across the hillslope, but species distributions varied in response to hillslope moisture content. Taken together, these results suggest that at 10–20 m from the stream, transitions occur that separate riparian from upland conditions and may provide valuable insight into riparian zone definition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.