Abstract

While unconditionally secure bit commitment (BC) is considered impossible within the quantum framework, it can be obtained under relativistic or experimental constraints. Here we study whether such BC can lead to secure quantum oblivious transfer (QOT). The answer is not completely negative. On one hand, we provide a detailed cheating strategy, showing that the "honest-but-curious adversaries" in some of the existing no-go proofs on QOT still apply even if secure BC is used, enabling the receiver to increase the average reliability of the decoded value of the transferred bit. On the other hand, it is also found that some other no-go proofs claiming that a dishonest receiver can always decode all transferred bits simultaneously with reliability 100% become invalid in this scenario, because their models of cryptographic protocols are too ideal to cover such a BC-based QOT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.