Abstract

In this paper, we describe a method for recovering camera parameters from perspective views of daylight shadows in a scene, given only minimal geometric information determined from the images. This minimal information consists of two 3D stationary points and their cast shadows on the ground plane. We show that this information captured in two views is sufficient to determine the focal length, the aspect ratio, and the principal point of a pinhole camera with fixed intrinsic parameters. In addition, we are also able to compute the orientation of the light source. Our method is based on exploiting novel inter-image constraints on the image of the absolute conic and the physical properties of solar shadows. Compared to the traditional methods that require images of some precisely machined calibration patterns, our method uses cast shadows by the sun, which are common in natural environments, and requires no measurements of any distance or angle in the 3D world. To demonstrate the accuracy of the proposed algorithm and its utility, we present the results on both synthetic and real images, and apply the method to an image-based rendering problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.