Abstract
Camera-based photoplethysmography (cbPPG) is an optical measurement technique that reveals pulsatile blood flow in cutaneous microcirculation from a distance. cbPPG has been shown to reflect pivotal haemodynamic events like cardiac ejection in healthy subjects. In addition, it provides valuable insight into intrinsic microcirculatory regulation as it yields dynamic, two-dimensional perfusion maps. In this study, we evaluate the feasibility of a clinical cbPPG application in critical care patients. A mobile camera set-up to record faces of patients at the bed site was constructed. Videos were made during the immediate recovery after cardiac surgery under standard critical care conditions and were processed offline. Major motion artefacts were detected using an optical flow technique and suitable facial regions were manually annotated. cbPPG signals were highpass filtered and Fourier spectra out of consecutive 10s signal segments calculated for heart rate detection. Signal-to-noise ratios (SNR) of the Fourier spectra were derived as a quality measure. Reference data of vital parameters were synchronously acquired from the bed site monitoring system. Seventy patient videos of an average time of 28.6±2.8 min were analysed. Heart rate (HR) was detected within a±5 bpm range compared to reference in 83% of total recording time. Low SNR and HR detection failure were mostly, but not exclusively, attributed to non-physiological events like patient motion, interventions or sudden changes of illumination. SNR was reduced by low arterial blood pressure, whereas no impact of other perioperative or disease-related parameters was identified. Cardiac ejection is detectable by cbPPG under pathophysiologic conditions of cardiovascular disease and perioperative medicine. cbPPG measurements can be seamlessly integrated into the clinical work flow of critical care patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.