Abstract

Escherichia coli O157:H7 is a foodborne pathogen that has become a serious global concern for food safety. Despite the application of different traditional biocontrol methods in the food industry, food borne disease outbreaks linked to this organism remain. Due to their high specificity, lytic bacteriophages are promising antimicrobial agents that could be utilized to control pathogens in foods. In this study, a novel Escherichia phage, CAM-21, was isolated from a dairy farm environment. CAM-21 showed targeted host specificity towards various serotypes of Shiga toxin-producing E. coli, including O157:H7, O26, O103, and O145. Morphological analyses revealed that CAM-21 has a polyhedron capsid and a contractile tail with a diameter of about 92.83 nm, and length of about 129.75 nm, respectively. CAM-21 showed a strong inhibitory effect on the growth of E. coli O157:H7, even at a multiplicity of infection (MOI) of as low as 0.001. Phage adsorption and one-step growth analysis indicated that the target pathogen was rapidly lysed by CAM-21 that exhibited a short latent time (20 min). Electron microscopic and genomic DNA analyses suggested that CAM-21 is a lytic phage, classified as a new species in the Tequatrovirus genus of the Myoviridae Family. Based on whole genome sequencing, CAM-21 has a double-stranded DNA with 166,962 bp, 265 open reading frames and 11 tRNA. The genome of CAM-21 did not encode toxins, virulence factors, antibiotic resistance, lysogeny or allergens. Phylogenetic and genomic comparative analyses suggested that CAM-21 is a T4-like phage species. The growth of E. coli O157:H7 was effectively controlled in milk, ground beef and baby spinach at MOIs of 1000 and 10,000. CAM-21 significantly (P ≤ 0.05) reduced the bacterial counts of the treated foods, ranging from 1.4–2.0 log CFU/mL in milk to 1.3–1.4 log CFU/g in ground beef and baby spinach. These findings suggest that the lytic phage, CAM-21, is a potential candidate for controlling E. coli O157:H7 contamination in foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.