Abstract

Objectives: The purpose of this study was to determine the molecular and biochemical changes in the contractile protein, calponin (Cp), which temporally coincide with a previously reported state of sustained contractility following traumatic brain injury (TBI).Methods: Double immunofluorescence, western analysis and two-dimensional non-equilibrium pH gradient gel electrophoresis (NEPHGE)/SDS-PAGE techniques were utilized to determine both the location and extent of Cp within smooth muscle cells (SM) and the phosphorylation state of Cp following TBI, as induced using a weight drop acceleration impact model.Results: Double immunofluorescence for Cp and SM indicate that following injury, Cp migrates from the cytosol to a location subjacent to the SM membrane. Western analysis revealed a significant increase in Cp protein expression following injury that was maintained up to 48 hours post-injury. Combined Western analysis and NEPHGE indicated that Cp is phosphorylated following TBI.Discussion: Cp migration and phosphorylation may underlie the mechanism for increased vasoreactivity leading to hypoperfusion following TBI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.