Abstract

In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, such as those formed by Sec61 complexes in the ER membrane, would interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism of intracellular signaling. We identified a calmodulin (CaM) binding motif in the cytosolic N-terminus of Sec61α from Canis familiaris that binds CaM, but not Ca2+-free apo-CaM, with nanomolar affinity and sequence specificity. In single channel lipid bilayer measurements, CaM potently mediated Sec61-channel closure in a Ca2+-dependent manner. No functional CaM binding motif was identified in the corresponding region of Sec61p from Saccharomyces cerevisiae, and no channel closure occurred in the presence of CaM and Ca2+. Therefore, CaM binding to the cytosolic N-terminus of Sec61α is involved in limiting Ca2+-leakage from the ER in C. familiaris but not S. cerevisiae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.