Abstract

Calcium signaling plays a key role in bone turnover, regulating both osteoblasts and osteoclasts. Despite this the role of calmodulin, the primary intracellular calcium receptor regulatory protein, has received little attention. In this brief review, the function of Ca(2+)/calmodulin signaling in osteoclast development, function, and apoptosis is reviewed. Considerable evidence supports an important regulatory role for Ca(2+)/calmodulin signaling in each of these processes. The overall role of Ca(2+)/calmodulin in regulating bone turnover is also supported by animal and human studies showing that calmodulin antagonists preserve bone mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.