Abstract

Literature data indicate that some calixarene derivatives with antimicrobial activities may be useful as drugs; one of the aspects of the biological activity of different classes of antibiotics concerns interactions with lipid membranes. Here, the possibility of incorporation and/or translocation of three amphiphilic p-tert-butylcalix[4]arene derivatives across membranes was studied using lipid monolayers. The derivatives used have 6-aminopenicillanic acid or benzylpenicillin moieties grafted in alternate positions at the calixarene lower rim; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), a model bacterial membrane lipid, was used to prepare the monolayers. The miscibility of calixarene-antibiotic conjugates with lipid films was studied using surface pressure and surface potential measurements, as well as Brewster angle microscopy. The results obtained show that the miscibility is significantly different for the 6-aminopenicillanic acid and the two benzylpenicillin derivatives. Molecular modeling allowed the assessment of the lowest energy conformations of the calixarene derivatives and gave more insight into the interactions with the DMPE films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.