Abstract

A high-accuracy calibration of inductive coil sensors based on Printed Circuit Board (PCB), commonly used in rotating coil field measurements of particle accelerator magnets, is presented. The amplitude and phase of signals with and without main field suppression are compared in order to simultaneously determine both the PCB rotation radius and the transverse offset of its plane from rotation center. The accuracy of planar wire placement on the PCB boards is exploited to create loops highly precise in area which rotate at different radii. Such an area reproducibility and circuit geometry allow the suppression of the fundamental field, enabling the calibration, as well as improving signal resolution and mitigating vibration effects. Furthermore, the calibration can be performed dynamically, in-situ during measurements. Calibration accuracy is validated experimentally by referencing the PCB positions with a Coordinate Measuring Machine (CMM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.