Abstract

The 4pi gamma-counting system is well suited for analysis of small environmental samples of low activity because it combines advantages of the low background and the high detection efficiency due to the 4pi solid angle. A new numerical simulation approach is proposed for the HPGe well-type detector geometry to calculate the full-energy peak and the total efficiencies, as well as to correct for the coincidence summing effect. This method depends on a calculation of the solid angle subtended by the source to the detector at the point of entrance, (Abbas, 2006a). The calculations are carried out for non-axial point and cylindrical sources inside the detector cavity. Attenuation of photons within the source itself (self-attenuation), the source container, the detector's end-cap and the detector's dead layer materials is also taken into account. In the Belgium Nuclear Research Center, low-activity aqueous solutions of (60)Co and (88)Y in small vials are routinely used to calibrate a gamma-ray p-type well HPGe detector in the 60-1836keV energy range. Efficiency values measured under such conditions are in good agreement with those obtained by the numerical simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.