Abstract

A series of drop tests was implemented in the present study in order to allow the reproduction of a single impact identical to the high frequency mechanical impact (HFMI) under monitored conditions in the laboratory. Therewith, characterization of the investigated material’s mechanical behavior by explicitly considering possible irregularities concerning the present deformation modes would be enabled. Main goal was the determination of the investigated material’s dynamic yield stress for various strain rates inside the spectrum of interest, so that the Cowper–Symonds viscous material model would be calibrated for the subsequent HFMI simulation. The values of the dynamic yield stress extracted by the present drop tests show good agreement with other experimental methods regarding the investigated material S355. The introduction of the calibrated material behavior on the present drop tests in the finite element (FE) analysis of HFMI led to reduced preciseness though, in comparison with the FE analysis, which considered high strain rate tensile tests found in literature. A series of conclusions was drawn from both the experimental and numerical investigations, confirming most of the initial expectations. Further work is proposed, in order to clarify an incompatibility met during the numerical investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.