Abstract

Models based on Numerical Weather Prediction (NWP) are widely used for the day-ahead forecast of solar resources. This study is focused on the calibration of the hourly global solar irradiation forecasts provided by the Global Forecast System (GFS), a model from the NWP class. Since the evaluation of GFS raw forecasts sometimes shows a high degree of uncertainty (the relative error exceeding 100%), a procedure for reducing the errors is needed as a prerequisite for engineering applications. In this study, a deep analysis of the error sources in relation to the state of the atmosphere is reported. Of special note is the use of sky imagery in the identification process. Generally, it has been found that the largest errors are determined by the underestimation of cloud coverage. For calibration, a new ensemble forecast is proposed. It combines two machine learning approaches, Support Vector Regression and Multi-Layer Perceptron. In contrast to a typical calibration, the objective function is constructed based on the absolute error instead of the traditional root mean squared error. In terms of normalized root mean squared error, the calibration roughly reduces the uncertainty in hourly global solar irradiation by 16%. The study was conducted with high-quality ground-measured data from the Solar Platform of the West University of Timisoara, Romania. To ensure high accessibility, all the parameters required to run the proposed calibration procedures are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.