Abstract

The calibration of physical force fields from particle trajectories is important for experiments in soft matter, biophysics, active matter, and colloidal science. However, it is not always possible to have a standard method to characterize a force field, especially for systems that are out of equilibrium. Here, we introduce a generic toolbox for calibrating any kind of conservative or non-conservative, fixed or time-varying potentials that is powered by recurrent neural networks (RNN). We show that with the help of neural networks, we can outperform standard methods as well as analyze systems that cannot be approached by existing methods. We provide a software package that is available online for free access.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.