Abstract

Abstract Fibre Bragg gratings (FBGs) are utilized to function as internal strain sensors during casting, solidification and cooling of two hypoeutectic Al alloys and technically pure Al. In situ neutron diffraction experiments were conducted simultaneously onsite the STRESS-SPEC instrument at the Research-Neutron Source (MLZ) in Garching. The experimental data correlated with structural finite element simulation and X-ray micro tomography (CT) elucidates the mechanisms of this measurement system. The presented work offers a new practical approach to measure in-situ strains during casting of Al alloys by using FBG-based sensors. The FBG strain results correlate with the Al(311) peak obtained by neutron diffraction which is furthermore used for calibration. The examination of interactions between fibres and surrounding cast Al by finite element simulation and CT of the cast specimens enables the application of the sensors for unequivocal strain measurements in castings as well as the characterization of alloys during solidification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.