Abstract

Liquid-crystal spatial light modulator (LC-SLM) has been widely applied as a programmable digital device. However, the LC-SLM can only manipulate on light fields accurately under designated wavelengths since, when being uploaded a specific grayscale image onto it, the phase retardance offered by the LC-SLM is relevant to the wavelength of the incident light. This means that the calibration of LC-SLM is indispensable once the working wavelength changes. In this paper, based on a phase retrieval algorithm, a novel phase calibration method with high efficiency and accuracy is proposed for scaling LC-SLM. In the method, a 1-D phase retrieval algorithm for recovering the phase of a 1-D light field distribution is used to measure the voltage-phase characteristic curve of LC-SLM, where the gradient descent algorithm with a Root Mean Square propagation is introduced to obtain the phase. Simulations and experiments show that this method is stable and has the ability of anti-noise on some conditions and can eliminate the influence caused by crosstalk between pixels on the calibration. Compared with the traditional diffraction-based method, our method improves the calibration error up to 30% under the same experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.