Abstract

The Angstrom–Prescott (A–P) model is widely suggested for estimating solar radiation (Rs) in areas without measured or deficiency of data. The aim of this research was calibration and validation of the coefficients of the A–P model at six meteorological stations across arid and semi-arid regions of Iran. This model has improved by adding the air temperature and relative humidity terms. Besides, the coefficients of the A–P model and improved models have calibrated using some optimization algorithms including Harmony Search (HS) and Shuffled Complex Evolution (SCE). Performance indices, i.e., Root Mean Square Error (RMSE), Mean Bias Error, and coefficient of determination (R2) have used to analyze the models ability in estimating Rs. The results indicated that the performance of the A–P model had more precision and less error than improved models in all the stations. In addition, the best results have obtained for the A–P model with the SCE algorithm. The RMSE varies between 0.82 and 2.67 MJ m−2 day−1 for the A–P model with the SCE algorithm in the calibration phase. In the SCE algorithm, the values of RMSE had decreased about 4% and 7% for Mashhad and Kerman stations in the calibration phase compared to the HS algorithm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.