Abstract

The Bayesian methodology described in this paper has the inherent capability of choosing, from calibration-type curves, candidates which are plausible with respect to measured data, expert knowledge and theoretical models (including the nature of the measurement errors). The basic steps of Bayesian calibration are reviewed and possible applications of the results are described in this paper. A calibration related to head-space gas chromatographic data is used as an example of the proposed method. The linear calibration case has been treated with a log-normal distributed measurement error. Such a treatment of noise stresses the importance of modelling the random constituents of any problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.