Abstract

Despite the benefits of diffusion-based calibrant-free sampling based on solid-phase microextraction (SPME), this quantification approach is often underestimated due to an inadequate understanding of how extraction parameters influence the extracted amount and quantification of analytes. Currently, application of this approach for complex samples with binding matrix components is very limited. This study presents the development of a computational model that is used to identify the critical parameters for the diffusion-based sampling. Simulations are conducted under simultaneous variations in mass transfer and adsorptive surface binding constants and the presence of a binding matrix component in the sample. The simulation results correlate well with previously reported experimental data and improve the predictions when compared to previously introduced semiempirical models. This work enhanced basic understanding of physical processes involved in analyte quantification with SPME, which is of benefit when p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.