Abstract

The purpose of this paper is to propose a novel strategy to detect small calculi efficiently. The proposed calculus detection strategy focuses on decorrelation of forward scattered waves caused by the failure of Born's approximation. A calculus causes waveform changes of transmit pulses, resulting in a decrease in the cross-correlation coefficients calculated from IQ signals scattered near the calculus position. Therefore, we can detect calculi from the appearance of dips in correlation coefficients. When a calculus exists in a digital tissue map, sharp and deep dips in cross-correlation coefficients between acoustic IQ signals appear around the calculus. By contrast, no apparent dip exists when a tissue map contains no calculus. A scan line interval of 0.2mm or less is appropriate for the conditions simulated in this paper, and the proper transmit focal range for the proposed method is at a calculus range. These results imply that the proposed strategy can improve the efficiency of US devices for small calculus detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.