Abstract

The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.

Highlights

  • At present about 40% of all steel in the world is melted in arc steel melting furnaces

  • Because of the non-uniform distribution of power along the torch length, it is observed non-uniform distribution of its radiation flux along the ingot surfaces over furnace length (Curve 1 at Figure 5): I, II rows are 5 - 10 kW/m2, III-V are 20 - 30 kW/m2, VI, VII—are 15 - 20 kW/m2

  • The laws of radiation from surfaces should be used when solid fuel is fired and for calculation heat radiation from refractory lining. The use of these laws is unacceptable in calculating heat transfer in torch furnaces during combustion of gas, liquid, and pulverized fuel

Read more

Summary

Introduction

At present about 40% of all steel in the world is melted in arc steel melting furnaces. Before 1978 an electric arc represented “black box” in arc steel melting furnaces (ASFs), uninvestigated radiating volume ionized gas body. N. Makarov, the author of this article, developed geometrical, physical, and analytical model of an arc in ASF in the form of radiating cylinder, in 1983-92 the theory of radiative heat transfer in ASF. The theory is assumed to solve the integral equations of heat transfer and develop of 16 formulas for calculating heat transfer in ASF. The theory has allowed explaining many obscured thermophysical phenomenons; occurring in ASF, the author and his students received patents for inventions of new ways of steel melting in ASF and ASF’s design. The heat transfer theory was published in the form of a monograph in “Energoatomizdat” publishing

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.