Abstract

The ion-molecule reaction C + H3+ --> CH(+) + H2 has not been studied in the laboratory but is thought to be important in the gas phase synthesis of organic molecules in dense interstellar clouds. We have studied this reaction theoretically by performing quantum chemical ab initio calculations on the potential surface. We find that there is no activation barrier to the reaction and that it proceeds smoothly to the first excited electronic state of CH+. The rate coefficient as a function of temperature can then be estimated using the proper long-range potentials. The rate coefficient at 10 K is calculated to be 2.9 x 10(-9) cm3 s-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.