Abstract

A modified perturbation approach for the calculation of the vibrational wave function of polyatomic molecules is discussed. It is demonstrated that if the expansion point of the potential is determined variationally, the leading first-order term in the perturbation expansion of the vibrational wave function vanishes. Furthermore, the new expansion point is a very good approximation to the vibrationally averaged molecular geometry. The required third derivatives of the potential energy with respect to geometrical distortions have been calculated by numerical differentiation. Two approaches are discussed, one based on the differentiation of the molecular Hessian and the other on the molecular gradient. Results are presented for the averaged molecular geometry of a large set of molecules, including studies of electronically excited states and effects of electron correlation. The largest molecule included is butane with a total of 14 atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.