Abstract
The measurement of the ambient dose equivalent H*(10) with automatic real-time radioactivity monitors using gamma-ray spectrometry provides valuable information at short integration times and serves as an alternative to conventional peak analysis of spectra. In this paper, a full methodology for the calculation of this quantity using Monte Carlo (MC) simulations is described and applied to real spectrometric measurements with LaBr3(Ce) scintillation detectors. The methodology involves the calculation of the fluence-to-H*(10) conversion factors and a method for obtaining the fluence from gamma-ray spectra. The combination of these two elements makes it possible to calculate the H*(10). The obtained results are compared with the H*(10) measurements of a Geiger-Müller (GM) detector. Finally, the necessary activity concentration to produce a certain increment on the H*(10) is discussed for some isotopes. This is used to discuss the analysis capabilities of the spectrometric detectors when compared to GM ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.