Abstract

The results of analyzing a number of models to calculate the statistical fourth-order moments of turbulent fluctuations of vertical velocity and temperature, which describe diffusion processes in equations for triple correlations in RANS models, are presented. Correct calculation of higher-order moments allows adequate description of the impact of large-scale vortex structures on the vertical flow of turbulence energy, as well as the impact of chemical reactions (in the case of reactive impurities) and/or phase transitions (moisture condensation and evaporation) in the atmospheric boundary layer.Results of calculations with the use of the quasi-normality hypothesis, a number of empirical formulas. and algebraic models for fourth-order cumulants are comparedwith in situ measurements in the convective boundary layer of the atmosphere. It is shown that the secondorder- closure models, which are much more efficient in numerical implementation than the thirdorder models, predict the behavior of the higher-order moments not worse than the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.