Abstract

In order to prepare the p-ray data library requested in a design of fission and fusion reactors, γ-ray production cross sections and spectra of Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au and Pb have been obtained at the neutron energies of 1–20 MeV, using a spin-dependent multi-step evaporation model. Calculations include dipole and quadrupole transition without the distinction between electric and magnetic process, and take explicit account of the role of yrast levels. The effects of the yrast levels and γ-ray strength function upon γ-ray production are also investigated in relation to particle emission. At the incident neutron energies where (n,nγ ) and/or (n,2nγ ) reactions are dominant, the present model is shown to be able to predict the production of secondary γ-rays (<9.0 MeV) from medium-heavy to heavy nuclei with reasonable accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.