Abstract

Calculation of final size of an epidemic model offers a useful estimation for the impact of an epidemic. Despite its usefulness, the majority of practical applications focuses on the classical Kermack McKendrick model for final size calculation. Estimation of final size for different types of epidemics such as vector-transmitted infection is a forthcoming target. In this paper, we derive an explicit form of a final size equation for a vector-transmitted epidemic model. Numerical calculation of a final size equation revealed the existence of a threshold curve which separates a region into two distinct bistable sub-regions if infection induced death is present. In other words, an epidemic outcome can be qualitatively different depending on the initial state of an epidemic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.