Abstract
AbstractThe DFT‐B3LYP method, with basis set 6‐31G*, is employed to optimize molecular geometries and electronic structures of thirty‐nine nitro arenes. The averaged molar volume (V) and theoretical density (ϱ) are estimated using the Monte‐Carlo method, based on 0.001 electrons/bohr3 density space and a self‐compiled program. The detonation velocity (D) and pressure (P) of the explosives are estimated by using the Kamlet–Jacbos equation on the basis of the theoretical density and heat of formation (ΔfH), which is calculated using the PM3 method. The reliability of this theoretical method and results are tested by comparing the theoretical values of ϱ and D with the experimental or referenced values. The theoretical values of D and P are correlated with the experimental values of electric sensitivity (EES). It is found that, for the nitro arenes, there is a linear relationship between the square of detonation velocity (D2) or detonation pressure (P) and electric sensitivity (EES), which suggests that such a theoretical approach can be used to predict or judge the magnitude of EES, which is difficult to measure in the molecular design of energetic materials. In addition, we have discussed the influence of the substituted groups and the parameters of the electronic structure on density, detonation velocity, pressure, and electric sensitivity, and have shown that the substituted groups have the effect of activity or insensitivity, and that the influence of Q‐NO2 and ELUMO is important.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.