Abstract
An adapted version of the Stefan equation (CLIFFSE) was tested to predict lateral progression of the frost front into cohesive sediments that form coastal cliffs along the north shore of the maritime estuary and gulf of the St Lawrence River (Quebec, Canada). The equation was adapted to accommodate the influence of cliff erosion on lateral penetration of freezing and thawing into vertical cliff faces. As the cliff erodes, freezing and thawing are initiated from the newly revealed surface. Frost progression and erosion were measured with an automated thermal erosion pin system. Measured observations agreed with predictions from the adapted equation (78 to 99% of the variability explained). Erosion associated with thawing front progression during winter warm spells led to a relative reduction in the frost front depth. Subsequently, progression of the frost front into the cliff contributed to an additional 50 cm of sediment freezing and erosion by the end of the cold season, which was not predicted by the original Stefan equation. Our findings support the hypothesis that multiple warm spells influence the amount of lateral penetration of the frost front in vertical cliffs. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.