Abstract
NMR chemical shifts have been experimentally measured and theoretically estimated for all the carbon atoms of (1R,3S,4S,8S)-p-menthane-3,9-diol in chloroform solution. Theoretical estimations were performed using a combination of molecular dynamics simulations and quantum mechanical calculations. Molecular dynamics simulations were used to obtain the most populated conformations of the (1R,3S:4S,8S)-p-menthane-3,9-diol as well as the distribution of the solvent molecules around it. Quantum mechanical calculations of NMR chemical shifts were performed on the most relevant conformations employing the GIAO-DFT formalism. A special emphasis was put in evaluating the effects of the surrounding solvent molecules. For this purpose, supermolecule calculations were performed on complexes constituted by the solute and n chloroform molecules, where n ranges from 3 to 16. An excellent agreement with experimental data has been obtained following this computational strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.